Exercise 4

Find the series solution for the following homogeneous second order ODEs:

$$
u^{\prime \prime}-u^{\prime}+x u=0
$$

Solution

Because $x=0$ is an ordinary point, the series solution of this differential equation will be of the form,

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

To determine the coefficients, a_{n}, we will have to plug the form into the ODE. Before we can do so, though, we must write expressions for u^{\prime} and $u^{\prime \prime}$.

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \rightarrow \quad u^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \quad \rightarrow \quad u^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Now we substitute these series into the ODE.

$$
\begin{gathered}
u^{\prime \prime}-u^{\prime}+x u=0 \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} n a_{n} x^{n-1}+x \sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
\end{gathered}
$$

The first series on the left is zero for $n=0$ and $n=1$, so we can start the sum from $n=2$. In addition, the second series is zero for $n=0$, so we can start the sum from $n=1$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

Since we want to combine the series, we want the first two series to start from $n=0$. We can start the first at $n=0$ as long as we replace n with $n+2$, and we can start the second at $n=0$ as long as we replace n with $n+1$.

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

To get x^{n+1} in the first two series, write out the first term and change n to $n+1$ in each.

$$
2 a_{2}-a_{1}+\sum_{n=0}^{\infty}(n+3)(n+2) a_{n+3} x^{n+1}-\sum_{n=0}^{\infty}(n+2) a_{n+2} x^{n+1}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

The point of doing this is so that x^{n+1} is present in each term so we can combine the series.

$$
2 a_{2}-a_{1}+\sum_{n=0}^{\infty}\left[(n+3)(n+2) a_{n+3} x^{n+1}-(n+2) a_{n+2} x^{n+1}+a_{n} x^{n+1}\right]=0
$$

Factor the left side.

$$
2 a_{2}-a_{1}+\sum_{n=0}^{\infty}\left[(n+3)(n+2) a_{n+3}-(n+2) a_{n+2}+a_{n}\right] x^{n+1}=0
$$

Thus,

$$
\begin{aligned}
2 a_{2}-a_{1}=0 & \text { and } \quad(n+3)(n+2) a_{n+3}-(n+2) a_{n+2}+a_{n}=0 \\
a_{2}=\frac{1}{2} a_{1} & \text { and } \quad a_{n+3}=\frac{(n+2) a_{n+2}-a_{n}}{(n+3)(n+2)} .
\end{aligned}
$$

Now that we know the recurrence relation, we can determine the coefficients.

$$
\begin{array}{ll}
n=0: & a_{3}=\frac{2 a_{2}-a_{0}}{6}=\frac{-a_{0}+a_{1}}{6} \\
n=1: & a_{4}=\frac{3 a_{3}-a_{1}}{12}=\frac{-a_{0}-a_{1}}{24} \\
n=2: & a_{5}=\frac{4 a_{4}-a_{2}}{20}=\frac{-a_{0}-4 a_{1}}{120} \\
n=3: & a_{6}=\frac{5 a_{5}-a_{3}}{30}=\frac{3 a_{0}-8 a_{1}}{720} \\
n=4: & a_{7}=\frac{6 a_{6}-a_{4}}{30}=\frac{8 a_{0}-3 a_{1}}{5040}
\end{array}
$$

Therefore,

$$
\begin{aligned}
u(x)=a_{0}\left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\right. & \left.\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}+\cdots\right) \\
& +a_{1}\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}+\cdots\right),
\end{aligned}
$$

where a_{0} and a_{1} are arbitrary constants.

